If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-14x-80=0
a = 10; b = -14; c = -80;
Δ = b2-4ac
Δ = -142-4·10·(-80)
Δ = 3396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3396}=\sqrt{4*849}=\sqrt{4}*\sqrt{849}=2\sqrt{849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{849}}{2*10}=\frac{14-2\sqrt{849}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{849}}{2*10}=\frac{14+2\sqrt{849}}{20} $
| (-1)^(1/2)^(z-1)=5 | | 11c-3=10-9 | | 11c+3=10c-9 | | 0=40x-5x^2 | | -3(x-4)-4(x+5)=-1 | | 2=(y,1050+y)*5 | | 2=y/1050+y*5 | | 3,5x=21 | | -11c-(-20c-13)=11c+43 | | 29a+8=30+5 | | (2x+5)=(3x²-2x-4) | | -1/2(t+3)-10=6.5 | | 3(r+13)=5(r+1) | | 4x^2-9x=-100 | | 4x^2-9x+100=0 | | (5+3)k=48 | | 3x−38=30−x | | 3/2x+-1=1/2–3x | | 1/x=-2/3 | | 1/x=5/4 | | 3^(x+1)+3^x=108 | | 3p-8=6 | | X2-6x-112=0 | | 4(x+10)+15=100 | | 4x+89=-7x+65 | | x²+2=38 | | 3y=X+100 | | 4b+5b=18 | | 9y^2+21y-30=0 | | 4{2x-3}=36 | | 0,4x+10=0 | | 2(x-5)+3(x-2)=8+7(x+4) |